Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
  • M MenoRischio-Progettazione
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Metrics
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • menorischio
  • MenoRischio-Progettazione
  • Wiki
  • Guida
  • Sezione3.md

Sezione3.md · Changes

Page history
Update Sezione3.md authored Nov 07, 2025 by Fabio Castelli's avatar Fabio Castelli
Hide whitespace changes
Inline Side-by-side
guida/Sezione3.md.md
View page @ 53f8ead7
......@@ -41,7 +41,7 @@ Mettendo insieme queste ipotesi, si può quindi esprimere il rischio secondo la
$$ R=\int_{0}^{1} E \cdot V \left( T_r \right) d\left( \frac{1}{T_r} \right) $$
Tale formula teorica può essere tradotta in una più immediata espressione di calcolo partendo dalla stima dei valori di esposizione (in teoria indipendente dal tempo di ritorno) e loro vulnerabilità per un numero limitato di scenari di allagamento per assegnato tempo di ritorno (e.g. $T_r$ = 30, 200, 500 anni), come mostrato nella figura sottostante dove l'area al di sotto della curva danni-frequenza rappresenta il rischio atteso. Tale figura, presa da un caso reale, mostra chiaramente l'importanza di stimare il danno atteso $$E×V$$ anche per uno scenario di alluvione molto rara, come d'altronde esplicitamente richiesto dalla direttiva alluvioni 2007/60/CE ed il relativo D.Lgs attuativo 49/2010.
Tale formula teorica può essere tradotta in una più immediata espressione di calcolo partendo dalla stima dei valori di esposizione (in teoria indipendente dal tempo di ritorno) e loro vulnerabilità per un numero limitato di scenari di allagamento per assegnato tempo di ritorno (e.g. $T_r$ = 30, 200, 500 anni), come mostrato nella figura sottostante dove l'area al di sotto della curva danni-frequenza rappresenta il rischio atteso. Tale figura, presa da un caso reale, mostra chiaramente l'importanza di stimare il danno atteso $E×V$ anche per uno scenario di alluvione molto rara, come d'altronde esplicitamente richiesto dalla direttiva alluvioni 2007/60/CE ed il relativo D.Lgs attuativo 49/2010.
![440d2cee-61df-4417-bc5c-0bf2dfd31cc2](uploads/65a8107361210bc616d6086637bbe609/440d2cee-61df-4417-bc5c-0bf2dfd31cc2.png)
......
Clone repository
  • _sidebar
  • guida
    • AppendiceA.md
    • AppendiceB
    • Bibliografia.md
    • Introduzione.md
    • Sezione1.md
    • Sezione1_3.md
    • Sezione1_4.md
    • Sezione2.md
    • Sezione3.md
    • Sezione3_1.md
    • Sezione3_2.md
    • Sezione4.md
  • Home