Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
  • M MenoRischio-Progettazione
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Metrics
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • menorischio
  • MenoRischio-Progettazione
  • Wiki
  • Guida
  • Sezione2.md

Sezione2.md · Changes

Page history
Update Sezione2.md authored Nov 07, 2025 by Mario Di Bacco's avatar Mario Di Bacco
Hide whitespace changes
Inline Side-by-side
guida/Sezione2.md.md
View page @ b9e515a1
......@@ -158,4 +158,34 @@ Si è quindi fatto ricorso alla **Vine Copula (R-Vine)**, un modello gerarchico
* **Albero Iniziale ($T_1$):** Le copule binarie sono modellate direttamente tra le **coppie di variabili trasformate**.
* **Alberi Successivi:** I nodi rappresentano le densità di copula **condizionate** stimate nel livello precedente. Gli archi modellano la **dipendenza residua** condizionata da un sottoinsieme di altre variabili.
Questo approccio permette di ottimizzare la selezione della **famiglia di copula** (es. Gumbel, Clayton, Gaussiana, t) più appropriata per ogni specifica coppia di variabili condizionate/incondizionate. L'uso di copule **asimmetriche** (come Gumbel e Clayton) è utile in questo contesto, poiché permette di catturare la **dipendenza di coda** tra le variabili.
\ No newline at end of file
Questo approccio permette di ottimizzare la selezione della **famiglia di copula** (es. Gumbel, Clayton, Gaussiana, t) più appropriata per ogni specifica coppia di variabili condizionate/incondizionate. L'uso di copule **asimmetriche** (come Gumbel e Clayton) è utile in questo contesto, poiché permette di catturare la **dipendenza di coda** tra le variabili.
***
## 2.6 Generazione della Popolazione Sintetica di Eventi Estremi
Per ottenere un campione robusto che copra l'intera regione di interesse multivariata e consenta una stima stabile del **Tempo di Ritorno ($T_r$)**, è stata eseguita una simulazione **Monte Carlo** sulla struttura di dipendenza stimata.
Sono stati estratti **2 milioni di campioni** dalla Vine Copula precedentemente fittata. Il processo si articola in due fasi chiave:
* **1. Estrazione dallo Spazio Uniforme:** La Vine Copula, che opera nello spazio uniforme $[0, 1]$, viene campionata per generare una matrice di valori $(u_1, u_2, \dots, u_i)$. Questa matrice codifica la probabilità congiunta delle variabili, rispettando la complessa **struttura di dipendenza di coda**.
* **2. Trasformazione Inversa (Matrice M'):** I campioni uniformi vengono quindi trasformati nello spazio fisico originale (la **Matrice M'**, che rappresenta gli attributi simulati) attraverso la **Funzione di Distribuzione Cumulativa Inversa** di ciascuna distribuzione marginale ibrida (ECDF + GPD).
Questa trasformazione inversa è condizionale: i valori $u$ che cadono **sotto la soglia** vengono riportati nello spazio fisico utilizzando il corrispondente quantile dell'**ECDF**, mentre quelli **estremi** vengono trasformati utilizzando il corrispondente quantile della **GPD**. Il risultato è la Matrice M', una popolazione sintetica di 2 milioni di eventi che replica fedelmente sia le distribuzioni individuali degli attributi che la loro interdipendenza multivariata, estendendosi oltre la dimensione del campione osservato, e permettendo di stimare il Tempo di Ritorno basandosi su un lungo periodo virtuale di osservazione.
***
## 2.7 Definizione della Regione dello Spazio su cui Calcolare $T_r$
L'obiettivo di questa fase è proiettare sia gli eventi osservati che quelli simulati nel **dominio dei Fattori**, in modo che la probabilità di superamento multivariata possa essere calcolata in modo stabile.
### 2.7.1 Analisi Fattoriale e Calcolo dei Pesi $W$
La fase inizia con l'applicazione dell'**Analisi Fattoriale Esplorativa (EFA)** sulla Matrice degli Attributi **M** (eventi estremi originali). Per l'estrazione dei Fattori è stato impiegato il metodo di **Fattorizzazione Assiale Principale (Principal Axis Factoring - PAF)**, eseguito utilizzando la libreria *factor\_analyzer*.
Dopo l'estrazione iniziale dei Fattori tramite il metodo PAF, che assicura che i fattori siano ortogonali tra loro, è stata applicata la **Rotazione Varimax** per ottimizzare la struttura fattoriale e facilitarne l'interpretazione.
La Rotazione Varimax è una tecnica di rotazione ortogonale che ha come obiettivo la massimizzazione della varianza dei *factor loadings* al quadrato per ciascun fattore. Poiché è una rotazione ortogonale, mantiene l'indipendenza lineare tra i fattori. Il suo ruolo primario è:
* **Massima Semplificazione:** La rotazione ridefinisce gli assi dei fattori 1 e 2 in modo che ogni variabile originale (attributo) tenda ad avere *loadings* (pesi) **elevati solo su un singolo fattore** e *loadings* prossimi a zero sugli altri.
* **Migliore Interpretabilità:** Questo processo crea una struttura dei fattori più pulita (**Simple Structure**), rendendo immediato capire quali attributi contribuiscono a definire in modo univoco un dato fattore (es. gli attributi di Intensità su Factor 1 e quelli di Estensione/Durata su Factor 2, come si evince dalla Tabella 1).
\ No newline at end of file
Clone repository
  • _sidebar
  • guida
    • AppendiceA.md
    • AppendiceB
    • Bibliografia.md
    • Introduzione.md
    • Sezione1.md
    • Sezione1_3.md
    • Sezione1_4.md
    • Sezione2.md
    • Sezione3.md
    • Sezione3_1.md
    • Sezione3_2.md
    • Sezione4.md
  • Home